论文标题
树宽度二分法
Tree-width dichotomy
论文作者
论文摘要
我们证明,当有限集$ f $ f $ f $ f $ f $时,只有$ f $包含完整的图形,完整的两部分图,三脚架,三脚架(每个连接的森林中,每个连接的组件最多有3片)和三脚架的线图时,我们才有有限的f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f限制,我们证明了由有限的禁止诱导子图的有限套装的遗传类别的图形。
We prove that the tree-width of graphs in a hereditary class defined by a finite set $F$ of forbidden induced subgraphs is bounded if and only if $F$ includes a complete graph, a complete bipartite graph, a tripod (a forest in which every connected component has at most 3 leaves) and the line graph of a tripod.