论文标题
使用等离子体唤醒和相对论电离方面的超短脉冲产生从IR中IR到THZ范围
Ultra-short pulse generation from mid-IR to THz range using plasma wakes and relativistic ionization fronts
论文作者
论文摘要
本文讨论了频率下变频的数值和实验结果,并使用两种不同的等离子技术来覆盖10 $ $ M红外激光器,以覆盖整个波长(频率)范围从$λ$ = 1-150 $ $ $ $ m($ν$ = 300-2 THz)。第一个等离子体技术利用非线性等离子体唤醒中驱动激光脉冲的频率下变。基于这项技术,我们提出并证明了在量身定制的等离子体结构中,可以使用810 nm Ti:Sapphire驱动器激光器来生成多米式能量,单周期,长波长IR(3-20 $μ$ M)脉冲。在这里,我们将此想法扩展到THZ频率制度。我们表明,可以通过用picsecond 10 $μ$ M CO $ _2 $ _2 $ _2 $激光器和不同的形状的血浆结构来代替驱动激光器,从而生成子joule,terawatts,Terawatts,单周期Terahertz(2-12 THz或150-25 $ $ M)脉冲。第二个等离子体技术通过碰撞co $ _2 $激光碰到相当锐利的相对论电离前端,这是通过在不到一半循环(17 fs)CO $ _2 $激光器的情况下产生的。即使电离前部中的电子没有能量,也可以将CO $ _2 $激光器的频率放升,这是因为相对论多普勒效应,因为Co $ _2 $ _2 $激光脉冲进入前部。通过简单地更改前部电子密度,可以将波长从1-10美元$ $ m调节。虽然$ 5 <λ(μ$ m $)<10 $的升级光在向前的方向传播,但带有$ 1 <λ(μ$ m $)<5 $的光线反射。这两种血浆技术对于覆盖整个分子指纹区域似乎非常有前途。
This paper discusses numerical and experimental results on frequency downshifting and upshifting of a 10 $μ$m infrared laser to cover the entire wavelength (frequency) range from $λ$=1-150 $μ$m ($ν$=300-2 THz) using two different plasma techniques. The first plasma technique utilizes frequency downshifting of the drive laser pulse in a nonlinear plasma wake. Based on this technique, we have proposed and demonstrated that in a tailored plasma structure multi-millijoule energy, single-cycle, long-wavelength IR (3-20 $μ$m) pulses can be generated by using an 810 nm Ti:sapphire drive laser. Here we extend this idea to the THz frequency regime. We show that sub-joule, terawatts, single-cycle terahertz (2-12 THz, or 150-25 $μ$m) pulses can be generated by replacing the drive laser with a picosecond 10 $μ$m CO$_2$ laser and a different shaped plasma structure. The second plasma technique employs frequency upshifting by colliding a CO$_2$ laser with a rather sharp relativistic ionization front created by ionization of a gas in less than half cycle (17 fs) of the CO$_2$ laser. Even though the electrons in the ionization front carry no energy, the frequency of the CO$_2$ laser can be upshifted due to the relativistic Doppler effect as the CO$_2$ laser pulse enters the front. The wavelength can be tuned from 1-10 $μ$m by simply changing the electron density of the front. While the upshifted light with $5 <λ(μ$m$)< 10$ propagates in the forward direction, that with $1 <λ(μ$m$)< 5$ is back-reflected. These two plasma techniques seem extremely promising for covering the entire molecular fingerprint region.