论文标题
攀登三架梯子:全彩的高能量极限的四环振幅
Climbing three-Reggeon ladders: four-loop amplitudes in the high-energy limit in full colour
论文作者
论文摘要
使用速度进化方程的迭代解决方案,我们在四个循环中计算党$ 2 \ 2 $量规理论幅度,直到在regge限制中到近隔到领先的对数(NNLL)。通过将所得振幅与软奇异点的凸起特性进行对比,我们确定了以这种对数准确性的四环校正对软异常的尺寸,该尺寸在任何仪表理论中都普遍存在。我们发现后者的特征是四分之一的Casimir贡献,其贡献超出了尖峰异常的贡献。最后,在$ {\ cal n} = 4 $ super yang-mills的情况下,我们还以全彩色确定了通过NNLL四个循环的有限硬函数。
Using an iterative solution of rapidity evolution equations, we compute partonic $2\to 2$ gauge theory amplitudes at four loops in full colour up to the Next-to-Next-to-Leading Logarithms (NNLL) in the Regge limit. By contrasting the resulting amplitude with the exponentiation properties of soft singularities we determine the four-loop correction to the soft anomalous dimension at this logarithmic accuracy, which universally holds in any gauge theory. We find that the latter features quartic Casimir contributions beyond those appearing in the cusp anomalous dimension. Finally, in the case of ${\cal N}=4$ super Yang-Mills, we also determine the finite hard function at four loops through NNLL in full colour.