论文标题
Zagier的体重$ 3/2 $模块化表格
Zagier's weight $3/2$ mock modular form
论文作者
论文摘要
模拟模块化形式起源于Ramanujan关于模拟Theta功能的开创性作品。在1975年的论文中,Zagier证明了Hurwitz类Number $ h(n)$的某些转换属性用于判别$(-n)$。在现代框架中,这些结果表明,$ h(n)$的生成功能是一种模块化的重量3/2形式,theta功能是阴影。在这篇说明文件中,我们提供了Zagier结果的详细证明。
Mock modular forms have their origins in Ramanujan's pioneering work on mock theta functions. In a 1975 paper, Zagier proved certain transformation properties of the generating function of the Hurwitz class numbers $H(n)$ for the discriminant $(-n)$. In the modern framework, these results show that the generating function of $H(n)$ is a mock modular form of weight 3/2 with the theta function being the shadow. In this expository paper, we provide a detailed proof of Zagier's result.