论文标题

具有混合预测指标的功能线性回归

Functional Linear Regression with Mixed Predictors

论文作者

Wang, Daren, Zhao, Zifeng, Yu, Yi, Willett, Rebecca

论文摘要

我们研究了一个功能性线性回归模型,该模型涉及功能响应,并允许功能协变量和高维矢量协变量。所提出的模型是灵活的,并将文献中的几个功能回归模型嵌套为特殊情况。基于再现内核希尔伯特空间(RKHS)的理论,我们提出了一个受惩罚的最小二乘估计器,该估计量可以容纳在离散样品点上观察到的功能变量。除了常规的平滑性惩罚外,群体套管型的惩罚还进一步施加以引起高维矢量预测因子的稀疏性。我们得出有限的样本理论保证,并表明我们估计器的过剩预测风险是最小的。此外,我们的分析揭示了一种有趣的相变现象,即最佳过量风险是由功能回归系数的平滑度和稀疏性共同决定的。设计了一种基于迭代坐标下降的新型有效优化算法,以同时处理平滑度和群体惩罚。模拟研究和实际数据应用说明了与文献中最新方法相比,所提出的方法的有希望的表现。

We study a functional linear regression model that deals with functional responses and allows for both functional covariates and high-dimensional vector covariates. The proposed model is flexible and nests several functional regression models in the literature as special cases. Based on the theory of reproducing kernel Hilbert spaces (RKHS), we propose a penalized least squares estimator that can accommodate functional variables observed on discrete sample points. Besides a conventional smoothness penalty, a group Lasso-type penalty is further imposed to induce sparsity in the high-dimensional vector predictors. We derive finite sample theoretical guarantees and show that the excess prediction risk of our estimator is minimax optimal. Furthermore, our analysis reveals an interesting phase transition phenomenon that the optimal excess risk is determined jointly by the smoothness and the sparsity of the functional regression coefficients. A novel efficient optimization algorithm based on iterative coordinate descent is devised to handle the smoothness and group penalties simultaneously. Simulation studies and real data applications illustrate the promising performance of the proposed approach compared to the state-of-the-art methods in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源