论文标题

连续时间量子步行的浮点工程:迈向复杂和近代最邻居联轴器的模拟

Floquet engineering of continuous-time quantum walks: towards the simulation of complex and next-to-nearest neighbor couplings

论文作者

Novo, Leonardo, Ribeiro, Sofia

论文摘要

连续时间量子行走在图上的形式主义已被广泛用于量子运输的能源和信息传输以及量子算法的发展。但是,在实验设置中,对图的不同节点之间的耦合系数的控制有限(通常被认为是真实价值的),从而限制了可以实现的量子步行的类型。在这项工作中,我们在连续时间量子步行的背景下应用了Floquet Engineering的想法,即,我们定义了定期驱动的汉密尔顿人,这些汉密尔顿人可用于模拟某些目标连续时间量子步行的动态。我们专注于两个主要应用:i)模拟由于复杂的耦合系数而导致的量子步道,以打破时间转换对称性; ii)通过模拟近代最邻居耦合的存在来增加图的连接性。我们的工作提供了明确的模拟协议,可用于指导量子运输,工程一维量子步行的分散关系或研究高度连接的结构中的量子动态。

The formalism of continuous-time quantum walks on graphs has been widely used in the study of quantum transport of energy and information, as well as in the development of quantum algorithms. In experimental settings, however, there is limited control over the coupling coefficients between the different nodes of the graph (which are usually considered to be real-valued), thereby restricting the types of quantum walks that can be implemented. In this work, we apply the idea of Floquet engineering in the context of continuous-time quantum walks, i.e., we define periodically-driven Hamiltonians which can be used to simulate the dynamics of certain target continuous-time quantum walks. We focus on two main applications: i) simulating quantum walks that break time-reversal symmetry due to complex coupling coefficients; ii) increasing the connectivity of the graph by simulating the presence of next-to-nearest neighbor couplings. Our work provides explicit simulation protocols that may be used for directing quantum transport, engineering the dispersion relation of one-dimensional quantum walks or investigating quantum dynamics in highly connected structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源