论文标题
代数近似和KählerCalabi-yau品种的分解定理
Algebraic approximation and the decomposition theorem for Kähler Calabi-Yau varieties
论文作者
论文摘要
我们将带有日志终端奇点的数值$ k $ trievials的分解定理扩展到Kähler设置。在此过程中,我们证明所有这些品种都承认当地琐碎的代数近似强烈,从而完成了猜想Campana和Peternell的数字上$ K $的案例。
We extend the decomposition theorem for numerically $K$-trivial varieties with log terminal singularities to the Kähler setting. Along the way we prove that all such varieties admit a strong locally trivial algebraic approximation, thus completing the numerically $K$-trivial case of a conjecture of Campana and Peternell.