论文标题

熵线性响应理论与非马克维亚浴

Entropy Linear Response Theory with Non-Markovian Bath

论文作者

Chen, Yu

论文摘要

考虑到系统和浴室之间的突然耦合,我们开发了用于熵动力学的扰动计算。我们开发的理论可以在一般环境中起作用,而无需马尔可夫近似。分别针对玻色粒环境和费米子环境给出了扰动公式。我们发现Renyi熵响应仅与系统和环境的光谱函数以及特定的统计核分布函数有关。我们在短时间限内发现T^2的生长/衰减,对于第二雷尼熵的较长时间尺度,T线性生长/衰减。当环境温度较低时,发现雷尼熵的非单调行为非常笼统。当两个系统的温度彼此接近时,将获得热传输中的傅立叶定律。对sachdev-ye-kitaev模型耦合到自由费米子,进行了一致性检查,在一个过程双重到黑洞蒸发的过程中可以找到页面曲线的动力学。发现纠缠熵的振荡是针对环境差异的。

We developed a perturbative calculation for entropy dynamics considering a sudden coupling between a system and a bath. The theory we developed can work in general environment without Markovian approximation. A perturbative formula is given for bosonic environment and fermionic environment, respectively. We find the Renyi entropy response is only related to the spectral functions of the system and the environment, together with a specific statistical kernel distribution function. We find a t^2 growth/decay in the short time limit and a t linear growth/decay in longer time scale for second Renyi entropy. A non-monotonic behavior of Renyi entropy for fermionic systems is found to be quite general when the environment's temperature is lower. A Fourier's law in heat transport is obtained when two systems' temperature are close to each other. A consistency check is made for Sachdev-Ye-Kitaev model coupling to free fermions, a Page curve alike dynamics is found in a process dual to black hole evaporation. An oscillation of entanglement entropy is found for a gapped spectrum of environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源