论文标题
在能量离子照射下石墨烯中的电子级联和二级电子发射
Electron cascades and secondary electron emission in graphene under energetic ion irradiation
论文作者
论文摘要
横穿二维材料(例如石墨烯)的高能离子会产生强烈的电子激发。对工作函数上方的能量状态激发的电子会导致次级电子发射,从而减少离子撞击后石墨烯的能量量。电子可以发射(动能传递),也可以通过传递离子(势能转移)捕获。为了阐明三维材料中不存在的这种行为,我们在离子撞击后的第一个飞秒中模拟了石墨烯中的电子动力学。我们采用了两种概念上不同的计算方法:基于蒙特卡洛(MC),其中电子被视为经典粒子,以及时间依赖性密度函数理论(TDDFT),其中电子在机械上描述了量子。我们观察到,当通过互补的粒子中粒子中的模拟考虑到发射电子与石墨烯的静电相互作用时,电子发射对沉积能量的线性依赖性,从MC模拟中出现,变得更接近TDDFT值。我们的TDDFT模拟表明,电子捕获的概率随着离子速度的增加而迅速降低,而次级电子发射在高速度状态下占主导地位。我们估计,这些过程取决于离子及其速度,将沉积在石墨烯层中的能量量减少15 \,\%至65 \,\%。该发现清楚地表明,在离子照射下的二维材料中对损伤产生进行建模时,必须考虑电子发射。
Highly energetic ions traversing a two-dimensional material such as graphene produce strong electronic excitations. Electrons excited to energy states above the work function can give rise to secondary electron emission, reducing the amount of energy that remains the graphene after the ion impact. Electrons can either be emitted (kinetic energy transfer) or captured by the passing ion (potential energy transfer). To elucidate this behavior that is absent in three-dimensional materials, we simulate the electron dynamics in graphene during the first femtoseconds after ion impact. We employ two conceptually different computational methods: a Monte Carlo (MC) based one, where electrons are treated as classical particles, and time-dependent density functional theory (TDDFT), where electrons are described quantum-mechanically. We observe that the linear dependence of electron emission on deposited energy, emerging from MC simulations, becomes sublinear and closer to the TDDFT values when the electrostatic interactions of emitted electrons with graphene are taken into account via complementary particle-in-cell simulations. Our TDDFT simulations show that the probability for electron capture decreases rapidly with increasing ion velocity, whereas secondary electron emission dominates in the high velocity regime. We estimate that these processes reduce the amount of energy deposited in the graphene layer by 15\,\% to 65\,\%, depending on the ion and its velocity. This finding clearly shows that electron emission must be taken into consideration when modelling damage production in two-dimensional materials under ion irradiation.