论文标题
GPU加速晶格Boltzmann在多孔外壳中的非牛顿幂律流体模拟
GPU Accelerated Lattice Boltzmann Simulation of Non-Newtonian Power-Law Fluid in a Porous Enclosure
论文作者
论文摘要
本文展示了在充满非牛顿幂律流体的正方形多孔腔中进行传热的数值研究。图形处理单元(GPU)已被用来加速使用多余时间(MRT)晶格Boltzmann方法的数值模拟。修改后的幂律模型已被用来表征非牛顿流体的流动。这些模拟是针对幂律索引$ n $进行的,范围从$(0.6 \ leq n \ leq 1.0)$,darcy number $ da $范围从$(10^{ - 3} \ leq da \ leq da \ leq da \ leq 10^{ - 1})$和rayleigh $ ra $ ra $ ra $ ra $ ra。结果表明,努塞尔特的平均数字($ \叠加{nu} $)随着$ n $的增加而减少,而$ \ + + + + + + + + da $的值增加。此外,$ ra $的值的增加会导致平均努塞尔特数量增加。
This paper demonstrates a numerical study of heat transfer in a square porous cavity filled with non-Newtonian power-law fluid. A Graphics Processing Unit (GPU) has been used to accelerate the numerical simulation, which uses the Multiple-Relaxation-Time (MRT) Lattice Boltzmann Method. A modified power-law model has been employed to characterize the flow of non-Newtonian fluids. The simulations have been conducted for the power-law index $n$ ranging from $(0.6 \leq n \leq 1.0)$, the Darcy number $Da$ ranging from $(10^{-3} \leq Da \leq 10^{-1})$ and the Rayleigh number $Ra$ ranging from $(10^3 \leq Ra \leq 10^5)$. Results show that the average Nusselt number ($\overline{Nu}$) decreases with an increase in the value of $n$ while $\overline{Nu}$ increases with an increase in the value of $Da$. Moreover, an increment in the value of $Ra$ leads to an increase in the average Nusselt number.