论文标题

一类简并最小化问题的未稳定的混合高级方法

Unstabilized Hybrid High-Order method for a class of degenerate convex minimization problems

论文作者

Carstensen, C., Tran, N. T.

论文摘要

变异的计算中的放松激发了对一类简并凸的最小化问题的数值分析,这些问题具有一定的凸面控制和两侧$ p $增长的非刻痕凸电能密度。在原始变量中,最小化器可能不是唯一的,但导致h(\ peripatorName {div},ω; \ mathbb {m})$中的唯一压力$σ\。示例包括P-Laplacian,拓扑优化方面的最佳设计问题以及凸的双孔问题。混合高级方法(HHO)的近似值利用了分段raviart-thomas或BDM有限元的梯度重建,而无需在常规三角测量中稳定在简单中。将此HHO方法应用于简并最小化问题的类别,允许唯一的$ h(\ permatatorName {div})$符合压力近似$σ_h$。主要结果是lebesgue规范中应力误差$σ-σ_h$的先验和后验错误估计和可计算的较低能量结合。数值基准显示出更高的多项式度的收敛速率,并具有自适应网状固定率,并具有保证较低能量界限的第一个超级线性收敛速率。

The relaxation in the calculus of variation motivates the numerical analysis of a class of degenerate convex minimization problems with non-strictly convex energy densities with some convexity control and two-sided $p$-growth. The minimizers may be non-unique in the primal variable but lead to a unique stress $σ\in H(\operatorname{div},Ω;\mathbb{M})$. Examples include the p-Laplacian, an optimal design problem in topology optimization, and the convexified double-well problem. The approximation by hybrid high-order methods (HHO) utilizes a reconstruction of the gradients with piecewise Raviart-Thomas or BDM finite elements without stabilization on a regular triangulation into simplices. The application of this HHO method to the class of degenerate convex minimization problems allows for a unique $H(\operatorname{div})$ conforming stress approximation $σ_h$. The main results are a~priori and a posteriori error estimates for the stress error $σ-σ_h$ in Lebesgue norms and a computable lower energy bound. Numerical benchmarks display higher convergence rates for higher polynomial degrees and include adaptive mesh-refining with the first superlinear convergence rates of guaranteed lower energy bounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源