论文标题
具有均匀磁场的弗拉索夫 - 波森系统:矩和规律性的传播
The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity
论文作者
论文摘要
我们通过调整Perthame的狮子的工作,显示了具有均匀磁场$ b =(0,0,0,ω)$的3维Vlasov-Poisson系统的速度矩传的传播Perthame。添加的磁场还会在有时会产生奇异性,这有时是回旋期的倍数$ t = \ dfrac {2πk}ω,k \ in \ mathbb {n} $。该结果还允许显示解决方案的规律性传播。为了唯一,我们通过证明具有有界宏观密度的解决方案的集合是一个唯一性类别来扩展Loeper的结果。
We show propagation of moments in velocity for the 3-dimensional Vlasov-Poisson system with a uniform magnetic field $B = (0, 0, ω)$ by adapting the work of Lions, Perthame. The added magnetic field also produces singularities at times which are the multiples of the cyclotron period $t = \dfrac{2πk}ω, k \in \mathbb{N}$ . This result also allows to show propagation of regularity for the solution. For uniqueness, we extend Loeper's result by showing that the set of solutions with bounded macroscopic density is a uniqueness class.