论文标题
非铁路电路中的拓扑缺陷工程和PT对称性
Topological defect engineering and PT-symmetry in non-Hermitian electrical circuits
论文作者
论文摘要
我们采用电路网络来研究由平均时间对称$ \ MATHCAL {PT} $和手性对称性抗 - $ \ Mathcal {pt} $($ \ MATHCAL {aptp {appt} $)的非平时对称性$ \ MATHCAL {pt} $富含物质的拓扑状态。拓扑结构在复杂的入学带中表现出来,产生了出色的可测量性和信号噪声比。我们分析了$ \ MATHCAL {PT} $对称增益和损失对非速su-schrieffer--Heeger(SSH)电路中局部边缘和缺陷状态的影响。我们意识到系统的所有三个对称阶段,包括$ \ MATHCAL {APT} $对称制度,该制度发生在很大程度上。我们在任意边界条件下测量了入学频谱和本征状态,这使我们不仅可以解决拓扑边缘状态,还可以解决一种新颖的$ \ Mathcal {pt} $对称$ \ symmetric $ \ mathbb {z} _2 _2 $不变。我们在相图中发现了拓扑边缘状态和缺陷状态的不同特性。在不是$ \ Mathcal {pt} $对称的政权中,拓扑缺陷状态消失,只有在达到$ \ Mathcal {apt} $对称性时才能重新出现,而拓扑边缘状态始终占上风,并且只有在特征值的转变。我们的发现揭示了在任意维度的非热门系统中拓扑缺陷工程和调整的未来途径。
We employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry $\mathcal{PT}$ and chiral symmetry anti-$\mathcal{PT}$ ($\mathcal{APT}$). The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of $\mathcal{PT}$ symmetric gain and loss on localized edge and defect states in a non-Hermitian Su--Schrieffer--Heeger (SSH) circuit. We realize all three symmetry phases of the system, including the $\mathcal{APT}$ symmetric regime that occurs at large gain and loss. We measure the admittance spectrum and eigenstates for arbitrary boundary conditions, which allows us to resolve not only topological edge states, but also a novel $\mathcal{PT}$ symmetric $\mathbb{Z}_2$ invariant of the bulk. We discover the distinct properties of topological edge states and defect states in the phase diagram. In the regime that is not $\mathcal{PT}$ symmetric, the topological defect state disappears and only reemerges when $\mathcal{APT}$ symmetry is reached, while the topological edge states always prevail and only experience a shift in eigenvalue. Our findings unveil a future route for topological defect engineering and tuning in non-Hermitian systems of arbitrary dimension.