论文标题
示踪剂粒子与玻色污水冷凝物的激发相互作用的动力学
Dynamics of a tracer particle interacting with excitations of a Bose-Einstein condensate
论文作者
论文摘要
我们考虑了大量相互作用的玻色子的量子动力学与示踪剂粒子(即另一种粒子)耦合在圆环上。我们假设在最初的状态下,玻色子基本上形成了均匀的玻色网凝结物,并带有一些激发。通过对相互作用的适当平均尺度缩放,我们证明了$ n \ to \ infty $的有效动力学是由Bogoliubov-FröhlichHamiltonian生成的,该动力学是由bogoliubov-fröhlichhamiltonian生成的,该动力学是将示踪剂粒子线性地与激发场相结合的。
We consider the quantum dynamics of a large number $N$ of interacting bosons coupled a tracer particle, i.e. a particle of another kind, on a torus. We assume that in the initial state the bosons essentially form a homogeneous Bose-Einstein condensate, with some excitations. With an appropriate mean-field scaling of the interactions, we prove that the effective dynamics for $N\to \infty$ is generated by the Bogoliubov-Fröhlich Hamiltonian, which couples the tracer particle linearly to the excitation field.