论文标题
临界速度平均引理
Critical velocity averaging lemmas
论文作者
论文摘要
我们证明了新的速度平均为多维双曲线 - 抛物性部分微分方程。这些定理可以用于确定性和随机对流扩散方程的几个紧凑性结果。我们理论的优势之一是源术语的关键性,其中可能包括二阶和随机噪声的空间衍生物。
We prove new velocity averaging lemmas for multi-dimensional hyperbolic-parabolic partial differential equations. These theorems may be applied to establish several compactness results for both deterministic and stochastic convection-diffusion equations. Among the strengths of our theory is the criticality of the source term, which may include spatial derivatives of second order and stochastic noises.