论文标题

对非线性磁化动力学的载体汉密尔顿形式主义

Vector Hamiltonian Formalism for Nonlinear Magnetization Dynamics

论文作者

Tyberkevych, Vasyl, Slavin, Andrei, Artemchuk, Petro, Rowlands, Graham

论文摘要

载体汉密尔顿形式主义(VHF)已开发出描述弱非线性磁化动力学的描述。从传统的landau-lifshitz方程式从球体上描述磁化矢量$ \ vec {m}(\ vec {r},t)$的动力学的转变,到hamiltonian方程式,描述一个\ emph {spin optitation vector} $ \ vec { Azimuthal Lambert转换可以保留动态方程的相位空间区域和向量结构,并确保包含矢量$ \ vec {s}(\ vec {r},t)$的平面处于坐标$ \ vec {r} $ perpendicular的每个值处的每个值$ \ vec {m} _0(\ vec {r})$描述了系统的磁化基态。通过扩展$ \ vec {s}(\ vec {r},t)$在一组完整的线性磁性向量eigemodes $ \ vec {s}_ν(\ vec {\ vec {r> \ ll 1 $,可以在vector eigenmode profiles $ \ vec {s}_ν(\ vec {r})$上以积分的形式表达系统的哈密顿功能,并计算此汉密尔顿的所有系数。开发的方法使人们可以通过数值计算线性光谱和特征力谱以及半分析评估多模板非线性非线性非线性非线性相互作用的幅度来描述具有复杂几何形状和空间不均匀基态的微观和纳米级磁系统中弱非线性动力学。提出了已发达形式主义在具有空间不均匀基磁化磁化磁化磁化系统的示例。

Vector Hamiltonian formalism (VHF) for the description of a weakly nonlinear magnetization dynamics has been developed. Transformation from the traditional Landau-Lifshitz equation, describing dynamics of a magnetization vector $\vec{m}(\vec{r}, t)$ on a sphere, to a vector Hamiltonian equation, describing dynamics of a \emph{spin excitation vector} $\vec{s}(\vec{r}, t)$ on a plane, is done using the azimuthal Lambert transformation that preserves both the phase-space area and vector structure of dynamical equations, and guarantees that the plane containing vector $\vec{s}(\vec{r}, t)$ is at each value of the coordinate $\vec{r}$ perpendicular to the a stationary vector $\vec{m}_0(\vec{r})$ describing the magnetization ground state of the system. By expanding vector $\vec{s}(\vec{r}, t)$ in a complete set of linear magnetic vector eigemodes $\vec{s}_ν(\vec{r})$ of the studied system, and using a weakly nonlinear approximation $|\vec{s}(\vec{r}, t)| \ll 1$, it is possible to express the Hamiltonian function of the system in the form of integrals over the vector eigenmode profiles $\vec{s}_ν(\vec{r})$, and calculate all the coefficients of this Hamiltonian. The developed approach allows one to describe weakly nonlinear dynamics in micro- and nano-scale magnetic systems with complicated geometries and spatially non-uniform ground states by numerically calculating linear spectrum and eigenmode profiles, and semi-analytically evaluating amplitudes of multi-mode nonlinear interactions. Examples of applications of the developed formalism to the magnetic systems having spatially nonuniform ground state of magnetization are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源