论文标题

用于建模生产过程中复合工具系统的热化学固化过程的物理信息神经网络

Physics-Informed Neural Network for Modelling the Thermochemical Curing Process of Composite-Tool Systems During Manufacture

论文作者

Niaki, Sina Amini, Haghighat, Ehsan, Campbell, Trevor, Poursartip, Anoush, Vaziri, Reza

论文摘要

我们提出了一个物理信息的神经网络(PINN),以模拟在高压灭菌器中固化的工具上复合材料的热化学演化。特别是,我们通过使用基于物理学的损耗函数来优化深层神经网络(DNN)的参数,解决了微分方程的管理耦合系统(包括导电传热和树脂固化动力学)。为了说明热传导和树脂疗法的截然不同的行为,我们设计了一个由两个断开连接子网组成的PINN,并开发了一种顺序训练算法,从而减轻了传统训练方法中存在的不稳定性。此外,我们将明确的不连续性纳入了复合工具界面的DNN中,并将已知的身体行为直接在损耗函数中执行,以改善界面附近的解决方案。我们用一种自动调整与PDE,边界,界面和初始条件的损耗项上的权重的技术训练PINN。最后,我们证明一个人可以将问题参数作为模型的输入,从而导致替代物为各种问题设置提供实时模拟 - 并且可以使用转移学习来显着减少与初始训练的模型相似的问题设置的训练时间。在多种情况下,在具有不同材料厚度和热边界条件的多种情况下证明了所提出的PINN的性能。

We present a Physics-Informed Neural Network (PINN) to simulate the thermochemical evolution of a composite material on a tool undergoing cure in an autoclave. In particular, we solve the governing coupled system of differential equations -- including conductive heat transfer and resin cure kinetics -- by optimizing the parameters of a deep neural network (DNN) using a physics-based loss function. To account for the vastly different behaviour of thermal conduction and resin cure, we design a PINN consisting of two disconnected subnetworks, and develop a sequential training algorithm that mitigates instability present in traditional training methods. Further, we incorporate explicit discontinuities into the DNN at the composite-tool interface and enforce known physical behaviour directly in the loss function to improve the solution near the interface. We train the PINN with a technique that automatically adapts the weights on the loss terms corresponding to PDE, boundary, interface, and initial conditions. Finally, we demonstrate that one can include problem parameters as an input to the model -- resulting in a surrogate that provides real-time simulation for a range of problem settings -- and that one can use transfer learning to significantly reduce the training time for problem settings similar to that of an initial trained model. The performance of the proposed PINN is demonstrated in multiple scenarios with different material thicknesses and thermal boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源