论文标题

接触超导体和新的大型重力的几何形状

Contact Geometry in Superconductors and New Massive Gravity

论文作者

Flores-Alfonso, D., Lopez-Monsalvo, C. S., Maceda, M.

论文摘要

证明每三维$ \ varepsilon $ -CONTACT歧管的定义属性与要求在2+1电磁学中实现伦敦方程相同。为了说明这一点,我们表明,每一个也是k联合和$η$ -IENSTEIN的歧管是对最通用的二次外膜重力作用的真空解决方案,尤其是新的大型重力。例如,我们分析配备了触点结构的$ S^3 $以及相关的度量张量,使触点分布的规范发电机为无效。所得的洛伦兹度量表明是三维大型重力的真空溶液。此外,通过将新的巨大重力作用耦合到麦克斯韦 - 切尔尼·西蒙斯,我们获得了一类直接来自PARA接触度量结构的带电溶液。最后,我们重复了阿贝里亚·希格斯理论的练习。

The defining property of every three-dimensional $\varepsilon$-contact manifold is shown to be equivalent to requiring the fulfillment of London's equation in 2+1 electromagnetism. To illustrate this point, we show that every such manifold that is also K-contact and $η$-Einstein is a vacuum solution to the most general quadratic-curvature gravity action, in particular of New Massive Gravity. As an example we analyse $S^3$ equipped with a contact structure together with an associated metric tensor such that the canonical generators of the contact distribution are null. The resulting Lorentzian metric is shown to be a vacuum solution of three-dimensional massive gravity. Moreover, by coupling the New Massive Gravity action to Maxwell-Chern-Simons we obtain a class of charged solutions stemming directly from the para-contact metric structure. Finally, we repeat the exercise for the Abelian Higgs theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源