论文标题

自相似间隔分区演变的双向移民,移民和对称特性

Two-sided immigration, emigration and symmetry properties of self-similar interval partition evolutions

论文作者

Shi, Quan, Winkel, Matthias

论文摘要

Forman等。 (2020+) constructed $(α,θ)$-interval partition evolutions for $α\in(0,1)$ and $θ\ge 0$, in which the total sums of interval lengths ("total mass") evolve as squared Bessel processes of dimension $2θ$, where $θ\ge 0$ acts as an immigration parameter.这些演变具有与再生泊松 - 二迪里奇间隔分区有关的伪平台分布。在本文中,我们研究$(α,θ)$ - 间隔分区的对称性。此外,我们介绍了一个三参数family $ {\ rm ssip}^{(α)}(θ_1,θ_2)$的自相似间隔分区的演变,这些间隔分区的演变具有单独的左移民参数$θ_1$θ_1\ ge 0 $ ge 0 $ and $θ_2$ fe ge ge 0 $。他们还具有平方的贝塞尔总质量过程$2θ$,其中$θ=θ_1+θ_2-α\ ge-α$涵盖移民和移民。在约束$ \ max \ {θ_1,θ_2\} \geα$下,我们证明了$ {\ rm ssip}^{(α_1,θ_1,θ_2)$ - 进化是pseudo-statientary s in Interval poiss $ poiss $ poiss-dir $ poiss-dir $ poiss-dir $ dire $, $θ$,但我们无法覆盖所有参数,而没有为续集纸制定组成价值的马尔可夫链的限制理论。

Forman et al. (2020+) constructed $(α,θ)$-interval partition evolutions for $α\in(0,1)$ and $θ\ge 0$, in which the total sums of interval lengths ("total mass") evolve as squared Bessel processes of dimension $2θ$, where $θ\ge 0$ acts as an immigration parameter. These evolutions have pseudo-stationary distributions related to regenerative Poisson--Dirichlet interval partitions. In this paper we study symmetry properties of $(α,θ)$-interval partition evolutions. Furthermore, we introduce a three-parameter family ${\rm SSIP}^{(α)}(θ_1,θ_2)$ of self-similar interval partition evolutions that have separate left and right immigration parameters $θ_1\ge 0$ and $θ_2\ge 0$. They also have squared Bessel total mass processes of dimension $2θ$, where $θ=θ_1+θ_2-α\ge-α$ covers emigration as well as immigration. Under the constraint $\max\{θ_1,θ_2\}\geα$, we prove that an ${\rm SSIP}^{(α)}(θ_1,θ_2)$-evolution is pseudo-stationary for a new distribution on interval partitions, whose ranked sequence of lengths has Poisson--Dirichlet distribution with parameters $α$ and $θ$, but we are unable to cover all parameters without developing a limit theory for composition-valued Markov chains, which we do in a sequel paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源