论文标题

高等属曲线上的Schottky均匀化和Bloch-Wigner Diologarithm

Schottky uniformization and Bloch-Wigner dilogarithm on higher genus curves

论文作者

Bayramov, Ilyas

论文摘要

Riemann表面上迭代积分的融合问题可以追溯到Bloch,Levin和Zagier,他们在椭圆曲线的背景下证明了各种迭代积分的事实。在这项工作中,我证明了迭代的积分定义Bloch-Wigner在更高属曲线上的函数的融合,利用HOU在Riemann表面的Schottky统一理论中,以及Nayatani对Poincare Metrics of Boincare Metrics of kilenian组的bers bers的经典结果以及一些较新的结果。

The question of convergence of iterated integrals on Riemann surfaces goes back to Bloch, Levin, and Zagier, who have proved this fact for various iterated integrals in the context of elliptic curves. In this work, I prove the convergence of the iterated integral defining Bloch-Wigner function on higher genus curves, utilizing some novel results of Hou in the theory of Schottky uniformization of Riemann surfaces, as well as some classical results of Bers and more recent results of Nayatani on Poincare metrics on domains of discontinuity of Kleinian groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源