论文标题
在2D中,在bakhvalov型网上有两个参数的奇异扰动问题的有限元方法
Finite element method for singularly perturbed problems with two parameters on a Bakhvalov-type mesh in 2D
论文作者
论文摘要
对于带有两个小参数的奇异扰动椭圆模型问题,我们分析了Bakhvalov型网格上任何顺序的有限元方法。对于收敛分析,我们使用层的特征来构建一个新的插值。此外,对指数层附近的网格尺度进行了更微妙的分析。基于网格量表的插值和新分析,我们证明了最佳收敛顺序。
For a singularly perturbed elliptic model problem with two small parameters, we analyze finite element methods of any order on a Bakhvalov-type mesh. For convergence analysis, we construct a new interpolation by using the characteristics of layers. Besides, a more subtle analysis of the mesh scale near the exponential layer is carried out. Based on the interpolation and new analysis of the mesh scale, we prove the optimal convergence order.