论文标题

减少Clifford+T电路的CNOT计数

Reducing the CNOT count for Clifford+T circuits on NISQ architectures

论文作者

Gheorghiu, Vlad, Huang, Jiaxin, Li, Sarah Meng, Mosca, Michele, Mukhopadhyay, Priyanka

论文摘要

将量子电路映射到物理层时,必须考虑基础硬件架构施加的众多约束。物理Qubit的连接性是这样的约束,将诸如CNOT之类的两个问题的操作限制为“连接” Qubits。交换门可用于将逻辑量子台放在可允许的物理尺子上,但它们需要大幅增加CNOT计数。在本文中,我们考虑了在连接性约束架构上减少CNOT计数的问题,例如嘈杂的中间尺度量子(NISQ)计算设备。我们使用Steiner树“切片” Hadamard大门位置和“构建”中间{CNOT,T}子电路的电路,从而显着改善了以前的方法。我们比较了算法的性能,同时将不同的基准和随机电路映射到一些众所周知的架构,例如9 Qubit Square Grid,16 Qubits Square Grid,Rigetti 16 Qubit Aspen,16Qubition IBM QX5和20 Qubit IBM Tokyo。与Qiskit和Tket Transpiler以及使用交换门相比,我们的方法的CNOT计数较少。假设NISQ电路实现中的大多数错误是由于CNOT错误造成的,那么我们的方法将允许与以前的方法允许的可靠实现CNOT门更可靠的电路。

While mapping a quantum circuit to the physical layer one has to consider the numerous constraints imposed by the underlying hardware architecture. Connectivity of the physical qubits is one such constraint that restricts two-qubit operations, such as CNOT, to "connected" qubits. SWAP gates can be used to place the logical qubits on admissible physical qubits, but they entail a significant increase in CNOT-count. In this paper we consider the problem of reducing the CNOT-count in Clifford+T circuits on connectivity constrained architectures, like noisy intermediate-scale quantum (NISQ) computing devices. We "slice" the circuit at the position of Hadamard gates and "build" the intermediate {CNOT,T} sub-circuits using Steiner trees, significantly improving on previous methods. We compared the performance of our algorithms while mapping different benchmark and random circuits to some well-known architectures such as 9-qubit square grid, 16-qubit square grid, Rigetti 16-qubit Aspen, 16-qubit IBM QX5 and 20-qubit IBM Tokyo. Our methods give less CNOT-count compared to Qiskit and TKET transpiler as well as using SWAP gates. Assuming most of the errors in a NISQ circuit implementation are due to CNOT errors, then our method would allow circuits with few times more CNOT gates be reliably implemented than the previous methods would permit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源