论文标题
稳定的限制DAHA和双重戴克路径代数
The Stable Limit DAHA and the Double Dyck Path Algebra
论文作者
论文摘要
我们研究了GL型DAHA的作用与从标准Laurent多项式表示获得的两个多项式环的两个反向系统的兼容性。在这两种情况下,至关重要的分析是Cherednik操作员作用的兼容性。每种情况都会导致在无限多个变量(标准表示)中几乎对称多项式空间上的极限结构(+/-稳定极限DAHA)的表示。作为应用程序,我们表明双染色器路径代数的定义表示来自 +稳定极限DAHA的标准表示。
We study the compatibility of the action of the DAHA of type GL with two inverse systems of polynomial rings obtained from the standard Laurent polynomial representations. In both cases, the crucial analysis is that of the compatibility of the action of the Cherednik operators. Each case leads to a representation of a limit structure (the +/- stable limit DAHA) on a space of almost symmetric polynomials in infinitely many variables (the standard representation). As an application, we show that the defining representation of the double Dyck path algebra arises from the standard representation of the +stable limit DAHA.