论文标题
干预疲劳是Covid-19大流行中强次波的主要原因
Intervention fatigue is the primary cause of strong secondary waves in the COVID-19 pandemic
论文作者
论文摘要
截至2020年11月,许多国家的Covid-19案件数量正在迅速增加。在欧洲,由于严格的锁定,该病毒在春季后期扩散了,但第二次大流行在整个秋天都在增长。在这项研究中,我们首先通过整合经典SIR模型的方程来重建每个国家的有效繁殖数$ {\ cal r}(t)$的时间演变。我们通过合适的时间序列差异基于估计的$ {\ cal r}(t)$群集国家。结果表明,简单的动力学机制决定了国家对COVID-19案例计数变化的反应。受这些结果的启发,我们将SIR模型扩展到包括社会响应,以解释新确认的每日案件的数字$ x(t)$。作为一阶模型,我们假设社交响应是在$ d_t {\ cal r} = - ν(x-x^*)$的表单上,其中$ x^*$是响应的阈值。响应率$ν$取决于$ x^*$是低于还是以上是此阈值,在三个参数上$ν_1,\;ν_2,\,\,ν_3,$和$ t $。当$ x <x^*$,$ν=ν_1$时,描述了当发病率较低时放松干预的效果。当$ x> x^*$,$ν=ν_2\ exp {( - ν_3T)} $,在发病率高时进行干预的影响。参数$ν_3$表示疲劳,即随着时间的流逝,干预的效果减少。提出的模型再现了许多国家观察到的Covid-19的典型不断发展的模式。估计参数$ν_1,\,ν_2,\,\,ν_3$和初始条件,例如$ {\ cal r} _0 $,用于不同国家 /地区,有助于确定其社交响应中的重要动态。一个结论是,在2020年秋天,欧洲第二波强的主要原因不是夏季的干预措施放松,而是秋季发展干预措施的一般疲劳。
As of November 2020, the number of COVID-19 cases is increasing rapidly in many countries. In Europe, the virus spread slowed considerably in the late spring due to strict lockdown, but a second wave of the pandemic grew throughout the fall. In this study, we first reconstruct the time evolution of the effective reproduction numbers ${\cal R}(t)$ for each country by integrating the equations of the classic SIR model. We cluster countries based on the estimated ${\cal R}(t)$ through a suitable time series dissimilarity. The result suggests that simple dynamical mechanisms determine how countries respond to changes in COVID-19 case counts. Inspired by these results, we extend the SIR model to include a social response to explain the number $X(t)$ of new confirmed daily cases. As a first-order model, we assume that the social response is on the form $d_t{\cal R}=-ν(X-X^*)$, where $X^*$ is a threshold for response. The response rate $ν$ depends on whether $X^*$ is below or above this threshold, on three parameters $ν_1,\;ν_2,\,ν_3,$, and on $t$. When $X<X^*$, $ν= ν_1$, describes the effect of relaxed intervention when the incidence rate is low. When $X>X^*$, $ν=ν_2\exp{(-ν_3t)}$, models the impact of interventions when incidence rate is high. The parameter $ν_3$ represents the fatigue, i.e., the reduced effect of intervention as time passes. The proposed model reproduces typical evolving patterns of COVID-19 epidemic waves observed in many countries. Estimating the parameters $ν_1,\,ν_2,\,ν_3$ and initial conditions, such as ${\cal R}_0$, for different countries helps to identify important dynamics in their social responses. One conclusion is that the leading cause of the strong second wave in Europe in the fall of 2020 was not the relaxation of interventions during the summer, but rather the general fatigue to interventions developing in the fall.