论文标题
通过旋转轨道相互作用,通过亚波长旋转粒子引起的光学分离
Optical isolation induced by subwavelength spinning particle via spin-orbit interaction
论文作者
论文摘要
光学隔离可以在光学通信中使用广泛应用的光对光进行非偏置操作。通过旋转结构进行的光学隔离,由于其无磁性和前所未有的性能引起了人们的关注。基于常规旋转的光学隔离依赖于在亚波长光子学中阻碍应用的笨重腔的使用。在这里,我们提出了一种新颖的光学隔离机制,通过将双曲线超材料的独特色散与evaneScent波的横向自旋轨道相互作用相结合。我们表明,亚波长双曲线纳米颗粒的旋转破坏了时间反转对称性,并产生了两个共振手性模式,它们有选择地将其搭配到波导模式的横向自旋。值得注意的是,横向自旋轨道相互作用会引起单向耦合,并在实验可行的旋转速度下隔离红外光。我们的工作融合了光学隔离和光子自旋轨相互作用的两个重要领域,从而导致无磁但紧凑的非偏置设备,用于光学通信,手性量子光学元件和拓扑光子学中的新型应用。
Optical isolation enables nonreciprocal manipulations of light with broad applications in optical communications. Optical isolation by rotating structures has drawn considerable attention due to its magnetic-free nature and unprecedented performance. Conventional rotation-based optical isolation relies on the use of bulky cavities hindering applications in subwavelength photonics. Here, we propose a novel mechanism of optical isolation by integrating the unique dispersion of a hyperbolic metamaterial with the transverse spin-orbit interaction of evanescent waves. We show that rotation of a subwavelength hyperbolic nanoparticle breaks the time-reversal symmetry and yields two resonant chiral modes that selectively couple to the transverse spin of waveguide modes. Remarkably, the transverse spin-orbit interaction can give rise to unidirectional coupling and $>95\%$ isolation of infrared light at an experimentally feasible rotation speed. Our work fuses the two important fields of optical isolation and photonic spin-orbit interactions, leading to magnetic-free yet compact nonreciprocal devices for novel applications in optical communications, chiral quantum optics, and topological photonics.