论文标题

限制双线性双线操作员的弱型行为

Limiting weak-type behavior for rough bilinear operators

论文作者

Qin, Moyan, Wu, Huoxiong, Xue, Qingying

论文摘要

令$ω_1,ω_2$为均值$ 0 $和$ \ \vecΩ=(ω_1,ω_2)\ in L \ log l(\ Mathbb {s}^{n-1})\ times log log l \ log l(\ log l(\ mathbb {s} s}^n-1})$。在本文中,我们研究了双线性最大函数的限制弱型行为$ m _ {\vecΩ} $和双线性单数积分$ t _ {\vecΩ} $与rugh-bernel $ \vecΩ相关的。对于所有$ f,g \ in l^1(\ mathbb {r}^n)$,我们表明,$ \ lim_ {λ\ to 0^+}λ| \ big \ big \ {x \ in \ mathbb {r} \frac{\|Ω_1Ω_2\|_{L^{1/2}(\mathbb{S}^{n-1})}}{ω_{n-1}^2}\prod\limits_{i=1}^2\| f_i \ | _ {l^1} $$和$$ \ lim_ {λ\ to 0^+}λ| \ big \ big \ {x \ in \ Mathbb {r}^n:| | t _ {\vecΩ}(f_1,f_2)(x)|>λ\ big \} |^{2} = \ frac {\ |ω_1Ω_2\ | _ {l^{1/2}(\ Mathbb {s}}^{n-1}}}}}}} {n^2} \ prod \ limits_ {i = 1}^2 \ | f_i \ | _ {l^1}。$$作为后果,获得了$ m _ {\vecΩ} $的弱型规范的下限和$ t _ {\vecΩ} $。即使在线性情况下,这些结果也是新的。还讨论了粗糙双线性分数最大函数和分数积分操作员的相应结果。

Let $Ω_1,Ω_2$ be functions of homogeneous of degree $0$ and $\vecΩ=(Ω_1,Ω_2)\in L\log L(\mathbb{S}^{n-1})\times L\log L(\mathbb{S}^{n-1})$. In this paper, we investigate the limiting weak-type behavior for bilinear maximal function $M_{\vecΩ}$ and bilinear singular integral $T_{\vecΩ}$ associated with rough kernel $\vecΩ$. For all $f,g\in L^1(\mathbb{R}^n)$, we show that $$\lim_{λ\to 0^+}λ|\big\{ x\in\mathbb{R}^n:M_{\vecΩ}(f_1,f_2)(x)>λ\big\}|^2 = \frac{\|Ω_1Ω_2\|_{L^{1/2}(\mathbb{S}^{n-1})}}{ω_{n-1}^2}\prod\limits_{i=1}^2\| f_i\|_{L^1}$$ and $$\lim_{λ\to 0^+}λ|\big\{ x\in\mathbb{R}^n:| T_{\vecΩ}(f_1,f_2)(x)|>λ\big\}|^{2} = \frac{\|Ω_1Ω_2\|_{L^{1/2}(\mathbb{S}^{n-1})}}{n^2}\prod\limits_{i=1}^2\| f_i\|_{L^1}.$$ As consequences, the lower bounds of weak-type norms of $M_{\vecΩ}$ and $T_{\vecΩ}$ are obtained. These results are new even in the linear case. The corresponding results for rough bilinear fractional maximal function and fractional integral operator are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源