论文标题
介绍
Introducción al Cálculo Fraccional
论文作者
论文摘要
创建以下材料是为了用于入门分数演算课程的想法。提出了分数演算史的概括,以及在当前定义之前存在的分数衍生物的不同尝试。提出了伽马函数,β函数和mittag-leffler函数的属性,它们是分数计算中的基本片段。介绍了Riemann-Liouville和Caputo分数衍生物的基本属性,以及它们对不同功能的实现。它还介绍了分数操作员的拉普拉斯变换,并提出了对小部分自由秋季问题的应用。
The following material was created with the idea of being used for an introductory fractional calculus course. A recapitulation of the history of fractional calculus is presented, as well as the different attempts at fractional derivatives that existed before current definitions. Properties of the gamma function, beta function and the Mittag-Leffler function are presented, which are fundamental pieces in the fractional calculus. The basic properties of Riemann-Liouville and Caputo fractional derivatives are presented, as well as their implementation to different functions. It also presents the Laplace transform of a fractional operator and an application to the fractional free fall problem.