论文标题
仅带有柜台的类似墙的吸引力:2D缸几何的确切结果
Attraction of like-charged walls with counterions only: Exact results for the 2D cylinder geometry
论文作者
论文摘要
我们研究了有限长度$ d $和圆周$ w $的圆柱体表面上的相同移动粒子系统的2D系统,并沉浸在介电常数$ \ varepsilon $的介质中。气缸的两个末端圆与固定均匀的电荷密度相似,相反的电荷$ -e $($ e $为基本电荷)的粒子被认为是``counterions'';整个系统是电性的。对于有限数量的计数器$ n $,此类几何形状也得到了很好的定义。我们的任务是得出由反向平衡中的反相位介导的末端圆之间的有效相互作用,在反度$β$下。系统在自由屈服耦合$γ\equivβe^2/\ varepsilon = 2 $上的精确解决方案用于测试压力的收敛,因为(偶数)粒子的数量从$ n = 2 $增加到$ \ \ \ infty $。距离$ d $的压力始终是正(类似圆圈之间的有效排斥),单调腐烂; $ n = 8 $计数器的数值结果非常接近热力学限制$ n \ to \ infty $中的数值结果。对于耦合$γ=2γ$,$γ= 1,2,\ ldots $,存在着连续的二维(2D)库仑系统的映射,其中$ n $颗粒是$ n $颗粒的$ n $颗粒的$ n $颗粒,这些($ n $ n $ n $ n $ n $ nate)与$ n $ sites的一维晶格模型进行了抗相互作用的抗相互作用集合的抗抗抗性变量。这允许人们准确处理密度剖面,两体密度以及耦合的压力$γ= 4 $和$ 6 $,最多$ n = 8 $颗粒。我们的主要发现是,当两个类似的墙壁都带有非零电荷密度时,压力在足够大的距离上会变为负$ d $。这表明热力学极限$ n \ to \ infty $也同样引起了吸引力,从相对较弱的耦合在2到4之间的稳定$γ$开始。
We study a 2D system of identical mobile particles on the surface of a cylinder of finite length $d$ and circumference $W$, immersed in a medium of dielectric constant $\varepsilon$. The two end-circles of the cylinder are like-charged with the fixed uniform charge densities, the particles of opposite charge $-e$ ($e$ being the elementary charge) are coined as ``counterions''; the system as a whole is electroneutral. Such a geometry is well defined also for finite numbers of counterions $N$. Our task is to derive an effective interaction between the end-circles mediated by the counterions in thermal equilibrium at the inverse temperature $β$. The exact solution of the system at the free-fermion coupling $Γ\equiv βe^2/\varepsilon =2$ is used to test the convergence of the pressure as the (even) number of particles increases from $N=2$ to $\infty$. The pressure as a function of distance $d$ is always positive (effective repulsion between the like-charged circles), decaying monotonously; the numerical results for $N=8$ counterions are very close to those in the thermodynamic limit $N\to\infty$. For the couplings $Γ=2γ$ with $γ=1,2,\ldots$, there exists a mapping of the continuous two-dimensional (2D) Coulomb system with $N$ particles onto the one-dimensional (1D) lattice model of $N$ sites with interacting sets of anticommuting variables. This allows one to treat exactly the density profile, two-body density and the pressure for the couplings $Γ=4$ and $6$, up to $N=8$ particles. Our main finding is that the pressure becomes negative at large enough distances $d$ if and only if both like-charged walls carry a nonzero charge density. This indicates a like-attraction in the thermodynamic limit $N\to\infty$ as well, starting from a relatively weak coupling constant $Γ$ in between 2 and 4.