论文标题
广义的超符合高速公倍数
Generalised superconformal higher-spin multiplets
论文作者
论文摘要
我们提出了广义$ \ Mathcal {n} = 1 $ super Conformal高旋转(SCHS)的量表多数$ t $,$υ_{α(n)\dotα(m)}^{(t)} $,带有$ n \ geq m \ geq 1 $。在组件级别上,对于$ t> 2 $,它们包含具有深度$ t-1 $,$ t $和$ t+1 $的广义共形高旋转(CHS)量规。 $ t = 1 $和$ t = 2 $的Supermultiplet包括普通和通用的CHS仪表字段。然后得出了同轴superspace背景上的$υ_{α(n)\dotα(m)}^{(t)} $的动力学动力学的超级范围和规格不变动作。对于情况,$ n = m = t = 1 $,对应于最大深度的graviton supermultiplet,我们将此动作扩展到bach-flat背景。还提供了超符合性非规范多重组的模型,这些模型预计在$υ^{(t)} _ {α(n)\dotα(m)} $的模型的bach-flat完成中起重要作用。最后,我们表明,在Bach-flat背景上,需要规格和Weyl不变性并不总是确定CHS字段的模型。
We propose generalised $\mathcal{N}=1$ superconformal higher-spin (SCHS) gauge multiplets of depth $t$, $Υ_{α(n)\dotα(m)}^{(t)}$, with $n\geq m \geq 1$. At the component level, for $t>2$ they contain generalised conformal higher-spin (CHS) gauge fields with depths $t-1$, $t$ and $t+1$. The supermultiplets with $t=1$ and $t=2$ include both ordinary and generalised CHS gauge fields. Super-Weyl and gauge invariant actions describing the dynamics of $Υ_{α(n)\dotα(m)}^{(t)}$ on conformally-flat superspace backgrounds are then derived. For the case $n=m=t=1$, corresponding to the maximal-depth conformal graviton supermultiplet, we extend this action to Bach-flat backgrounds. Models for superconformal non-gauge multiplets, which are expected to play an important role in the Bach-flat completions of the models for $Υ^{(t)}_{α(n)\dotα(m)}$, are also provided. Finally we show that, on Bach-flat backgrounds, requiring gauge and Weyl invariance does not always determine a model for a CHS field uniquely.