论文标题
超对称旋转多项式
The supersymmetric spinning polynomial
论文作者
论文摘要
在本文中,我们构建了超对称旋转多项式。这些是正交的多项式,可作为四点散射幅度的残基或不连续性的扩展基础,尊重四维超级繁殖性不变性。多项式是通过粘合一个巨大的两个无质量多重的壳上超对称的三分幅度来构建的,并用代数雅各布 - 多种单位鉴定。配备了这些,我们构建了超对称的efthedron,它几何定义了符合紫外线性和超级繁殖力不变性的威尔逊系数的允许区域。
In this paper, we construct the supersymmetric spinning polynomials. These are orthogonal polynomials that serve as an expansion basis for the residue or discontinuity of four-point scattering amplitudes, respecting four-dimensional super Poincare invariance. The polynomials are constructed by gluing on-shell supersymmetric three-point amplitudes of one massive two massless multiplets, and are identified with algebraic Jacobi-polynomials. Equipped with these we construct the supersymmetric EFThedron, which geometrically defines the allowed region of Wilson coefficients respecting UV unitarity and super Poincare invariance.