论文标题
准二维异质结构(k $ m_ {1-x} $ te)(late $ _ {3} $)($ m $ = m = m = mn,Zn),带电荷密度波
Quasi-two-dimensional heterostructures (K$M_{1-x}$Te)(LaTe$_{3}$) ($M$ = Mn, Zn) with charge density waves
论文作者
论文摘要
具有两个不同功能构建块的分层异质结构材料可以教会我们有关层之间相互作用引起的新兴物理特性和现象。我们报告了间生的化合物KLA $ M $$ _ {1-x} $ TE $ _ {4} $($ M $ = M = Mn,Zn; $ x \ $ x \ $ 0.35),具有两个化学上不同的交替层[late $ _3 $]和[K $ m $ _ $ _ $ _ $ _ {1-x} $ te]。它们的晶体结构是不相称的,由MN化合物和透射电子显微镜(TEM)研究的单X射线衍射确定。 KLaMn$_{1-x}$Te$_{4}$ crystallizes in the orthorhombic superspace group $Pmnm$(01/2$γ$)$s$00 with lattice parameters $a$ = 4.4815(3) Å, $b$ = 21.6649(16) Å and $c$ = 4.5220(3) Å.它在室温下以调制波向量$ \ MathBf {q} $ = 1/2 $ = 1/2 $ \ MATHBF {B} $* + 0.3478 $ \ MATHBF {C} $*源自[Late $ _ {3} $] layers。 MN模拟表现出具有自旋冰冻温度的簇旋转玻璃行为$ t _ {\ mathrm {f}} $ $ \ $ \ $ 5 k,归因于无序的MN空位和[Mn $ _ {1-x} $ TE]层中的MN空缺和竞争磁性相互作用。 Zn模拟还具有与$ \ mathbf {q} $ - 具有$ \ mathbf {c} $* component〜0.346的$ \ mathbf {q} $的电荷密度波顺序。电子从[k $ m_ {1-x} $ te]转移到[late $ _ {3} $]层中存在于kla $ m_ {1-x} $ m_ {1-x} $ te $ _ {4} $中,从而导致增强的电子热热系数。 KLA $ M_ {1-X} $ TE $ _ {4} $($ M $ = M = M = M = Mn,Zn)在高温下表现出金属行为,并且在低温下表现出上涨,这表明在[晚期$ _ {3} $]层中与$ M M M MM M. M M $ m的载体中的携带者部分定位[$ M_ {1-X} $ TE]层。
Layered heterostructure materials with two different functional building blocks can teach us about emergent physical properties and phenomena arising from interactions between the layers. We report the intergrowth compounds KLa$M$$_{1-x}$Te$_{4}$ ($M$ = Mn, Zn; $x\approx$ 0.35) featuring two chemically distinct alternating layers [LaTe$_3$] and [K$M$$_{1-x}$Te]. Their crystal structures are incommensurate, determined by single X-ray diffraction for the Mn compound and transmission electron microscope (TEM) study for the Zn compound. KLaMn$_{1-x}$Te$_{4}$ crystallizes in the orthorhombic superspace group $Pmnm$(01/2$γ$)$s$00 with lattice parameters $a$ = 4.4815(3) Å, $b$ = 21.6649(16) Å and $c$ = 4.5220(3) Å. It exhibits charge density wave (CDW) order at room temperature with a modulation wave vector $\mathbf{q}$ = 1/2$\mathbf{b}$* + 0.3478$\mathbf{c}$* originating from electronic instability of Te-square nets in [LaTe$_{3}$] layers. The Mn analog exhibits a cluster spin glass behavior with spin freezing temperature $T_{\mathrm{f}}$ $\approx$ 5 K attributed to disordered Mn vacancies and competing magnetic interactions in the [Mn$_{1-x}$Te] layers. The Zn analog also has charge density wave order at room temperature with a similar $\mathbf{q}$-vector having the $\mathbf{c}$* component ~ 0.346 confirmed by selected-area electron diffraction (SAED). Electron transfer from [K$M_{1-x}$Te] to [LaTe$_{3}$] layers exists in KLa$M_{1-x}$Te$_{4}$, leading to an enhanced electronic specific heat coefficient. The resistivities of KLa$M_{1-x}$Te$_{4}$ ($M$ = Mn, Zn) exhibit metallic behavior at high temperatures and an upturn at low temperatures, suggesting partial localization of carriers in the [LaTe$_{3}$] layers with some degree of disorder associated with the $M$ atom vacancies in the [$M_{1-x}$Te] layers.