论文标题

最佳基于多端口的传送方案

Optimal Multi-port-based Teleportation Schemes

论文作者

Mozrzymas, Marek, Studziński, Michał, Kopszak, Piotr

论文摘要

在本文中,我们介绍了基于多端口的传送方案的最佳版本,允许发送大量量子信息。我们通过为成功和纠缠保真的平均概率表达表达来充分表征概率和确定性情况。在概率情况下,最终表达式仅取决于描述问题的全局参数,例如端口$ n $的数量,传送系统$ k $的数量和本地尺寸$ d $。它使我们可以在非最佳情况下显示端口数量的正方形改进。我们还表明,当端口的数字$ n $随着$ o(n)$的增加而增加时,传送系统的数量仍会增加。在确定性的情况下,我们将纠缠保真度与广义传送矩阵的最大特征值联系起来。在这两种情况下,都提出了最佳的测量集和发件人之间共享的最佳状态。所有结果都是通过制定和解决原始和双SDP问题来获得的,这是由于现有对称性而进行的。我们使用代表理论的广泛工具,并制定新的结果,这可能是潜在读者的不同兴趣。

In this paper, we introduce optimal versions of a multi-port based teleportation scheme allowing to send a large amount of quantum information. We fully characterise probabilistic and deterministic case by presenting expressions for the average probability of success and entanglement fidelity. In the probabilistic case, the final expression depends only on global parameters describing the problem, such as the number of ports $N$, the number of teleported systems $k$, and local dimension $d$. It allows us to show square improvement in the number of ports with respect to the non-optimal case. We also show that the number of teleported systems can grow when the number $N$ of ports increases as $o(N)$ still giving high efficiency. In the deterministic case, we connect entanglement fidelity with the maximal eigenvalue of a generalised teleportation matrix. In both cases the optimal set of measurements and the optimal state shared between sender and receiver is presented. All the results are obtained by formulating and solving primal and dual SDP problems, which due to existing symmetries can be solved analytically. We use extensively tools from representation theory and formulate new results that could be of the separate interest for the potential readers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源