论文标题
Cohen-Macaulay纤维锥,并定义模块的Rees代数理想
Cohen-Macaulay fiber cones and defining ideal of Rees algebras of modules
论文作者
论文摘要
Simis,Ulrich和Vasconcelos引入了通用的Bourbaki理想,研究了模块的Rees代数的Cohen-Macaulay特性。在本文中,我们证明,有时可以使用相同的技术来研究模块纤维锥的Cohen-Macaulay特性,并研究REES代数的定义理想。只要给定模块$ e $的REES代数是通用Bourbaki理想$ i $ $ e $的REES代数的变形。我们的主要技术结果提供了变形条件,实际上,将通用的布尔巴基理想的适用性扩展到了先前工作未涵盖的情况。
Generic Bourbaki ideals were introduced by Simis, Ulrich and Vasconcelos to study the Cohen-Macaulay property of Rees algebras of modules. In this article we prove that the same technique can sometimes be used to investigate the Cohen-Macaulay property of fiber cones of modules and to study the defining ideal of Rees algebras. This is possible as long as the Rees algebra of a given module $E$ is a deformation of the Rees algebra of a generic Bourbaki ideal $I$ of $E$. Our main technical result provides a deformation condition that in fact extends the applicability of generic Bourbaki ideals to situations not covered by previous work.