论文标题
围绕基于身份的解决方案的开放弦字段理论中的数值扭曲 - 连续su(1,1) - 单词解决方案
Numerical twist-even SU(1,1)-singlet solutions in open string field theory around the identity-based solution
论文作者
论文摘要
使用级别截断方法,我们构建了围绕takeahashi-tanimoto身份的理论构建扭曲和su(1,1)单元的数值解决方案(1,1)单元,该解决方案(TT解决方案)在波斯型开放字符串字段理论的框架中使用真实参数$ a $ a $ a $ a。我们发现与Kudrna和Schnabl在扰动真空周围的常规理论中构建的“双毛”和“ Ghost Brane”溶液相对应的解决方案。我们的解决方案显示出与Tachyon真空和单个Brane Solutions相似的$ $依赖性,我们在早期的作品中发现了这些解决方案。从这个意义上讲,我们也许可以期望它们与TT解决方案的$依赖性的常规解释一致。我们观察到,对于参数$ a $的某些区域,低级别的数值复杂解决方案在较高级别上变成了真实的解决方案。但是,这些真实的解决方案并不能改善对双毛的解释。
Using the level truncation method, we construct numerical solutions, which are twist even and SU(1,1) singlet, in the theory around the Takahashi-Tanimoto identity-based solution (TT solution) with a real parameter $a$ in the framework of bosonic open string field theory. We find solutions corresponding to "double brane" and "ghost brane" solutions which were constructed by Kudrna and Schnabl in the conventional theory around the perturbative vacuum. Our solutions show somewhat similar $a$-dependence to tachyon vacuum and single brane solutions, which we found in the earlier works. In this sense, we might be able to expect that they are consistent with the conventional interpretation of $a$-dependence of the TT solution. We observe that numerical complex solutions at low levels become real ones at higher levels for some region of the parameter $a$. However, these real solutions do not so improve interpretation for double brane.