论文标题
宇宙星系合并残留物中损耗锥星的特性
Properties of loss cone stars in a cosmological galaxy merger remnant
论文作者
论文摘要
目的:我们研究了损耗锥星的轨道和相空间特性,这些星星与在宇宙学场景中形成的坚硬的高红移二元超级黑洞(SMBH)系统强烈相互作用。方法:我们使用一种新型的混合集成方法,将直接N体代码$φ$ - grape与eTics结合在一起,Etics是一种采用自洽场方法进行力计算的无碰撞代码。混合方法显示出对粒子数量$> 10^6 $的直接总和的速度相当大,同时保留了颗粒子集的直接N体精度。在SMBH二进制进化过程中,我们监视与二元的单个恒星相互作用,以识别明显有助于SMBH二元硬化的恒星。结果:我们成功地详细识别和分析了从二进制中提取能量的恒星的特性。我们发现,这些恒星中看到的总结变化与整体二元能量变化非常吻合,这表明恒星相互作用是三轴贫困系统中SMBH二元硬化的主要驱动因素。我们系统的轻微三轴性会导致有效的损失锥加入,从而避免了最终的PARSEC问题。我们根据偶数区分了三种不同的相互作用群体。我们发现相互作用的明显流行率与二进制共同旋转。然而,逆行相互作用是最有能力的,仅贡献了总体能量交换的贡献略低。最有力的相互作用也可能导致恒星角动量中的符号变化。我们估计,二进制的合并时间尺度为$ \ 20 $ $ \ mathrm {myr} $,一个值比以前一项研究中报道的时间表大的值大。
Aims: We investigate the orbital and phase space properties of loss cone stars that interact strongly with a hard, high-redshift binary supermassive black hole (SMBH) system formed in a cosmological scenario. Methods: We use a novel hybrid integration approach that combines the direct N-body code $φ$-GRAPE with ETICS, a collisionless code that employs the self-consistent field method for force calculation. The hybrid approach shows considerable speed-up over direct summation for particle numbers $> 10^6$, while retaining accuracy of direct N-body for a subset of particles. During the SMBH binary evolution we monitor individual stellar interactions with the binary in order to identify stars that noticeably contribute to the SMBH binary hardening. Results: We successfully identify and analyze in detail the properties of stars that extract energy from the binary. We find that the summed energy changes seen in these stars match very well with the overall binary energy change, demonstrating that stellar interactions are the primary drivers of SMBH binary hardening in triaxial, gas-poor systems. The slight triaxiality of our system results in efficient loss cone refilling, avoiding the final parsec problem. We distinguish three different populations of interactions based on their apocenter. We find a clear prevalence of interactions co-rotating with the binary. Nevertheless, retrograde interactions are the most energetic, contributing only slightly less than the prograde population to the overall energy exchange. The most energetic interactions are also likely to result in a change of sign in the angular momentum of the star. We estimate the merger timescale of the binary to be $\approx 20$ $\mathrm{Myr}$, a value larger by a factor of two than the timescale reported in a previous study.