论文标题

具有内在原子轨道的分子系统的量子模拟

Quantum simulations of molecular systems with intrinsic atomic orbitals

论文作者

Barison, Stefano, Galli, Davide Emilio, Motta, Mario

论文摘要

量子计算机上分子系统的量子模拟通常采用最小的高斯轨道基集。与更现实的基础集相比,采用最小基集的量子模拟需要更少的量子和量子门,但准确性较低的产生结果。实现更准确结果的自然策略是增加基集大小,这又需要增加量子和量子门的数量。在这里,我们探讨了在分子的量子模拟中使用固有的原子轨道(IAO),以最少所需的相同计算成本来提高能量和性能的准确性。我们使用并比较了不同的ansätze,研究了变异量子量化的框架中的地面能量和一体和两体密度算子。我们还通过使用IBM量子计算机的量子算法的组合来证明这种方法在计算小分子的地面和激发态能量中的使用。

Quantum simulations of molecular systems on quantum computers often employ minimal basis sets of Gaussian orbitals. In comparison with more realistic basis sets, quantum simulations employing minimal basis sets require fewer qubits and quantum gates, but yield results of lower accuracy. A natural strategy to achieve more accurate results is to increase the basis set size, which in turn requires increasing the number of qubits and quantum gates. Here we explore the use of intrinsic atomic orbitals (IAOs) in quantum simulations of molecules, to improve the accuracy of energies and properties at the same computational cost required by a minimal basis. We investigate ground-state energies and one- and two-body density operators in the framework of the variational quantum eigensolver, employing and comparing different Ansätze. We also demonstrate the use of this approach in the calculation of ground- and excited-states energies of small molecules by a combination of quantum algorithms, using IBM Quantum computers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源