论文标题

在嘈杂的选民模型中,物种排除和共存,并具有竞争性殖民化的权衡

Species exclusion and coexistence in a noisy voter model with a competition-colonization tradeoff

论文作者

Martinez-Garcia, Ricardo, López, Cristóbal, Vazquez, Federico

论文摘要

我们介绍了一个不对称的嘈杂选民模型,以研究移民的共同效果和竞争派遣的折衷方案,这是在常规晶格中争夺空间的两个物种的动力学中的动态。一个物种的个体可以入侵晶格中最近的邻居地点,而其他物种的个体可以在任何距离内入侵地点,但在本地竞争较低,即,它们以概率$ g \ le 1 $建立。该模型还解释了移民,被模型为外部噪声,可能会自发地由其他物种的另一个人在晶格部位替换一个人。这种机制的组合为物种竞争带来了各种各样的结果,包括排除这两种物种,两种物种在不同人口比例下的单稳定共存,以及与依赖于初始条件的人群的双稳定共存。值得注意的是,在双稳定阶段,随着移民的强度克服了阈值,该系统经历了不连续的转变,导致与尖峰灾难相关的半环动力学,从而导致散布范围最短的物种的不可逆转损失。

We introduce an asymmetric noisy voter model to study the joint effect of immigration and a competition-dispersal tradeoff in the dynamics of two species competing for space in regular lattices. Individuals of one species can invade a nearest-neighbor site in the lattice, while individuals of the other species are able to invade sites at any distance but are less competitive locally, i.e., they establish with a probability $g \le 1$. The model also accounts for immigration, modeled as an external noise that may spontaneously replace an individual at a lattice site by another individual of the other species. This combination of mechanisms gives rise to a rich variety of outcomes for species competition, including exclusion of either species, mono-stable coexistence of both species at different population proportions, and bi-stable coexistence with proportions of populations that depend on the initial condition. Remarkably, in the bi-stable phase, the system undergoes a discontinuous transition as the intensity of immigration overcomes a threshold, leading to a half loop dynamics associated to a cusp catastrophe, which causes the irreversible loss of the species with the shortest dispersal range.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源