论文标题

在减少的力量和超能力之间,II

Between reduced powers and ultrapowers, II

论文作者

Farah, Ilijas, Shelah, Saharon

论文摘要

我们证明,与ZFC保持一致,没有次数无限(或可分离的度量,非紧凑)结构的超副作用与与Fréchet滤波器相关的可计数(或可分离度量)结构的减少产物同构。由于这种结构是可计量饱和的,因此连续假设意味着它们在基本等效时是同构的。

We prove that, consistently with ZFC, no ultraproduct of countably infinite (or separable metric, non-compact) structures is isomorphic to a reduced product of countable (or separable metric) structures associated to the Fréchet filter. Since such structures are countably saturated, the Continuum Hypothesis implies that they are isomorphic when elementarily equivalent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源