论文标题

缩放跳跃链的融合弱和金曼聚集的突变数量

Weak convergence of the scaled jump chain and number of mutations of the Kingman coalescent

论文作者

Favero, Martina, Hult, Henrik

论文摘要

Kingman合并是人群遗传学的一个基本过程,该过程对及时倒退的个体样本的血统进行了建模。在本文中,在大型制度中,我们研究了在中立和一般有限的 - 链球突变方案下合并的渐近特性,即包括父母独立和父母依赖性突变。特别是,我们考虑了一系列与融合有关的马尔可夫链,由块计数和突变计数组成组成。我们表明,适当缩放的这些组件分别弱化为确定性组件和泊松过程,分别具有不同的强度。一路走来,我们基于度量的变化开发了一种新颖的方法,以将父母独立于父母依赖的突变设置概括,其中几个关键量不明确。

The Kingman coalescent is a fundamental process in population genetics modelling the ancestry of a sample of individuals backwards in time. In this paper, in a large-sample-size regime, we study asymptotic properties of the coalescent under neutrality and a general finite-alleles mutation scheme, i.e. including both parent independent and parent dependent mutation. In particular, we consider a sequence of Markov chains that is related to the coalescent and consists of block-counting and mutation-counting components. We show that these components, suitably scaled, converge weakly to deterministic components and Poisson processes with varying intensities, respectively. Along the way, we develop a novel approach, based on a change of measure, to generalise the convergence result from the parent independent to the parent dependent mutation setting, in which several crucial quantities are not known explicitly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源