论文标题

矢量场奇点的多种变形

Versal deformations of vector field singularities

论文作者

Garay, Mauricio, van Straten, Duco

论文摘要

当矢量场的单一点通过共振,就会出现形式的不变锥。在七十年代,Pyartli证明,对于$(1,1)$ - 共振,该锥体实际上是分析性的,并且是一个不变的圆柱体的退化。 Stolovitch在他的论文中建立了一种新型的正常形式,并证明,对于简单的共鸣,在算术条件下,该锥体是分析品种的(细菌)。在本文中,我们证明了一种具有孤立奇异性的分析矢量场的多种变形定理。我们的结果意味着,在算术条件下,谐振锥是一组不变的歧管的变性,例如Pyartli的例子。对于多-HOPF分叉,即$(-1,1)^d $ - 谐音,这意味着存在携带准周期性动作的消失的托里,从而推广了Chenciner和Li的先前结果。

When a singular point of a vector field passes through resonance, a formal invariant cone appears. In the seventies, Pyartli proved that for $(-1,1)$-resonance the cone is in fact analytic and is the degeneration of a family of invariant cylinders. In his thesis, Stolovitch established a new type of normal form and proved that for a simple resonance and under arithmetic conditions the cone is (the germ of) an analytic variety. In this paper, we prove a versal deformation theorem for analytic vector fields with an isolated singularity over Cantor sets. Our result implies that, under arithmetic conditions, the resonant cone is the degeneration of a set of invariant manifolds like in Pyartli's example. For the multi-Hopf bifurcation, that is for the $(-1,1)^d$-resonance, this implies the existence of vanishing tori carrying quasi-periodic motions generalising previous results of Chenciner and Li.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源