论文标题
四维富士 - 苏木木系统的初始条件的空间
Space of initial conditions for the four-dimensional Fuji-Suzuki-Tsuda system
论文作者
论文摘要
给出了一个可用的4维动力系统的几何研究,所述称为富士 - 苏木木 - tsuda系统。通过不确定性的解决,其Bäklund变换的组被提升为从$(p^1)^4 $获得的理性品种之间的一组伪同态,沿着八个二维亚varieties和四个1二维子相位爆炸,从而从$(p^1)^4 $中获得。根基在néron-severi bilattices中实现。具有二次程度增长的离散painlevé系统也被认为是其翻译要素。
A geometric study for an integrable 4-dimensional dynamical system so called the Fuji-Suzuki-Tsuda system is given. By the resolution of indeterminacy, the group of its Bäklund transformations is lifted to a group of pseudo-isomorphisms between rational varieties obtained from $(P^1)^4$ by blowing-up along eight 2-dimensional subvarieties and four 1-dimensional subvarieties. The root basis is realised in the Néron-Severi bilattices. A discrete Painlevé system with quadratic degree growth is also realised as its translational element.