论文标题
探索双相镁合金中可塑性跨LaVes相位界面的传递
Exploring the transfer of plasticity across Laves phase interfaces in a dual phase magnesium alloy
论文作者
论文摘要
MG-AL合金的机械行为可以通过形成金属间薰衣草的相骨架,尤其是蠕变强度,从而在很大程度上得到改善。最近的纳米力学研究表明,即使在室温下,即使在室温下,也通过(mg,al)$ _ 2 $ ca laves阶段的脱位滑行可塑性。随着骨骼的加强,此阶段在低温下保持脆弱。在这项工作中,我们提供了从MG矩阵转移到(MG,AL)$ _ 2 $ CA骨架在室温下的实验证据,并通过原子模拟探索相关机制。我们确定了将Mg基础滑移转移到LAVE阶段的两种可能机制,具体取决于晶体学方向:分别由完全和部分脱位触发的直接和间接滑移转移。我们的实验和数值观察结果还强调了界面滑动的重要性,该界面滑动可以防止可塑性从一个相转移到另一个相。
The mechanical behaviour of Mg-Al alloys can be largely improved by the formation of an intermetallic Laves phase skeleton, in particular the creep strength. Recent nanomechanical studies revealed plasticity by dislocation glide in the (Mg,Al)$_2$Ca Laves phase, even at room temperature. As strengthening skeleton, this phase remains, however, brittle at low temperature. In this work, we present experimental evidence of slip transfer from the Mg matrix to the (Mg,Al)$_2$Ca skeleton at room temperature and explore associated mechanisms by means of atomistic simulations. We identify two possible mechanisms for transferring Mg basal slip into Laves phases depending on the crystallographic orientation: a direct and an indirect slip transfer triggered by full and partial dislocations, respectively. Our experimental and numerical observations also highlight the importance of interfacial sliding that can prevent the transfer of the plasticity from one phase to the other.