论文标题

优化的电流联合边缘学习的功率控制

Optimized Power Control for Over-the-Air Federated Edge Learning

论文作者

Cao, Xiaowen, Zhu, Guangxu, Xu, Jie, Cui, Shuguang

论文摘要

空中联邦边缘学习(Air-Feel)是一种通过无线网络进行隐私保护分布式学习的沟通效率解决方案。气效允许通过利用无线通道的波形叠加属性的梯度/模型更高的“一次性”梯度/模型的“一次性”,因此有望具有与网络大小无关的极低聚合潜伏期。但是,由于由于设备和噪声扰动的非均匀通道褪色引起的聚集误差,这种沟通效率可能会以学习性能下降的成本下降。先前的工作采用了通道反转功率控制(或其变体)来减少聚集误差,通过对齐通道的增益来减少聚集误差,但是,由于噪声扩增,在深层褪色的情况下,这可能是高度最佳的。为了克服这个问题,我们研究了功率控制优化,以增强气压的学习性能。为此,我们首先通过在任何给定的电力控制策略下得出损失功能的最佳差距来分析空气感觉的收敛行为。然后,我们优化功率控制,以最大程度地减少加速收敛的最佳差距,但要受边缘设备的一组平均功率约束。问题通常是由于在不同的设备和迭代上的功率控制变量耦合而无法解决的问题。为了应对这一挑战,我们通过共同利用连续的凸近似(SCA)和信任区域方法来开发有效的算法。数值结果表明,优化的功率控制策略比基准策略(例如通道反转和均匀的功率传输)要快得多。

Over-the-air federated edge learning (Air-FEEL) is a communication-efficient solution for privacy-preserving distributed learning over wireless networks. Air-FEEL allows "one-shot" over-the-air aggregation of gradient/model-updates by exploiting the waveform superposition property of wireless channels, and thus promises an extremely low aggregation latency that is independent of the network size. However, such communication efficiency may come at a cost of learning performance degradation due to the aggregation error caused by the non-uniform channel fading over devices and noise perturbation. Prior work adopted channel inversion power control (or its variants) to reduce the aggregation error by aligning the channel gains, which, however, could be highly suboptimal in deep fading scenarios due to the noise amplification. To overcome this issue, we investigate the power control optimization for enhancing the learning performance of Air-FEEL. Towards this end, we first analyze the convergence behavior of the Air-FEEL by deriving the optimality gap of the loss-function under any given power control policy. Then we optimize the power control to minimize the optimality gap for accelerating convergence, subject to a set of average and maximum power constraints at edge devices. The problem is generally non-convex and challenging to solve due to the coupling of power control variables over different devices and iterations. To tackle this challenge, we develop an efficient algorithm by jointly exploiting the successive convex approximation (SCA) and trust region methods. Numerical results show that the optimized power control policy achieves significantly faster convergence than the benchmark policies such as channel inversion and uniform power transmission.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源