论文标题

对未知系统的即时控制:从侧面信息到绩效通过可达性保证

On-The-Fly Control of Unknown Systems: From Side Information to Performance Guarantees through Reachability

论文作者

Djeumou, Franck, Vinod, Abraham P., Goubault, Eric, Putot, Sylvie, Topcu, Ufuk

论文摘要

我们开发了具有数据驱动的算法,用于具有先验未知的非线性动力学的系统分析和控制系统。所得算法不仅适合具有实时要求的设置,而且还提供可证明的性能保证。为此,他们仅从一个有限的途径轨迹中合并了嘈杂的数据,并在各种形式的侧面信息中合并。此类信息可能包括了解动态的规律性,对状态的代数约束,单调性或在各州之间的动力学中的解耦。具体来说,我们开发了两种算法,$ \ texttt {datareach} $和$ \ texttt {dataControl} $,以超越符合即可到达系统的可触发设置和设计控制系统的控制信号。 $ \ texttt {datareach} $构建一个包含未知动力学的差分包含。然后,在离散的时间设置中,它通过将基于泰勒的间隔方法应用于具有描述为差异夹杂物的动力学的系统中的可触发设置。我们提供了时间步长的界限,以确保$ \ texttt {datareach} $的正确性和终止。 $ \ texttt {dataControl} $使用计算的过度透射率和后退摩托克控制框架启用基于coNVEX-OVITIMAIZE的控制。此外,$ \ texttt {datacontrol} $实现了近乎最佳的控制,适合对此类系统的实时控制。我们建立了一个限制的次要性和计算控制值所需的原始操作数量。然后,从理论上讲,我们表明$ \ texttt {datacontrol} $以越来越多的数据和更丰富的侧面信息达到了更严格的次级优化界限。最后,对独轮车,四型和飞机系统进行的实验证明了两种算法在现有方法上的功效。

We develop data-driven algorithms for reachability analysis and control of systems with a priori unknown nonlinear dynamics. The resulting algorithms not only are suitable for settings with real-time requirements but also provide provable performance guarantees. To this end, they merge noisy data from only a single finite-horizon trajectory and, if available, various forms of side information. Such side information may include knowledge of the regularity of the dynamics, algebraic constraints on the states, monotonicity, or decoupling in the dynamics between the states. Specifically, we develop two algorithms, $\texttt{DaTaReach}$ and $\texttt{DaTaControl}$, to over-approximate the reachable set and design control signals for the system on the fly. $\texttt{DaTaReach}$ constructs a differential inclusion that contains the unknown dynamics. Then, in a discrete-time setting, it over-approximates the reachable set through interval Taylor-based methods applied to systems with dynamics described as differential inclusions. We provide a bound on the time step size that ensures the correctness and termination of $\texttt{DaTaReach}$. $\texttt{DaTaControl}$ enables convex-optimization-based control using the computed over-approximation and the receding-horizon control framework. Besides, $\texttt{DaTaControl}$ achieves near-optimal control and is suitable for real-time control of such systems. We establish a bound on its suboptimality and the number of primitive operations it requires to compute control values. Then, we theoretically show that $\texttt{DaTaControl}$ achieves tighter suboptimality bounds with an increasing amount of data and richer side information. Finally, experiments on a unicycle, quadrotor, and aircraft systems demonstrate the efficacy of both algorithms over existing approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源