论文标题

准线性椭圆运算符的非线性特征值问题和分叉

Nonlinear eigenvalue problems and bifurcation for quasi-linear elliptic operators

论文作者

Zongo, Emmanuel Wend Benedo, Ruf, Bernhard

论文摘要

在本文中,我们分析了在开放的平滑界面域中涉及均匀的Dirichlet边界条件的准线性椭圆算子的特征值问题。我们表明,与特征值相对应的特征函数属于$ l^{\ infty} $,这意味着$ c^{1,α} $平滑度,而第一个特征值很简单。此外,我们使用Krasnoselski分叉定理研究了琐碎溶液的分叉化结果,并使用Leray-Schauder学位研究了无穷大。我们还使用变分方法和Krasnoselski属显示了多个临界点的存在。

In this paper, we analyze an eigenvalue problem for quasi-linear elliptic operators involving homogeneous Dirichlet boundary conditions in a open smooth bounded domain. We show that the eigenfunctions corresponding to the eigenvalues belong to $L^{\infty}$, which implies $C^{1,α}$ smoothness, and the first eigenvalue is simple. Moreover, we investigate the bifurcation results from trivial solutions using the Krasnoselski bifurcation theorem and from infinity using the Leray-Schauder degree. We also show the existence of multiple critical points using variational methods and the Krasnoselski genus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源