论文标题
QCD样理论中的非最小梯度流
Nonminimal gradient flows in QCD-like theories
论文作者
论文摘要
通过在仪表场流动方程中包含一个费米子项,可以将类似QCD的理论的Yang-Mills梯度流进行推广。我们将其与典型自由度的两个不同流动方程相结合。不同梯度流设置的解决方案用于Yang-Mills Lagrangian密度的真空期望值的扰动计算,以及耦合中进化的费米子的现场重新归一化因子。我们发现一个单参数的流动系统家族,其中存在一种重新规范化方案,其中进化的费米昂异常维度消失了扰动理论中的所有秩序。研究了不同流的费用数量依赖性,并预计将应用于晶格研究。
The Yang-Mills gradient flow for QCD-like theories is generalized by including a fermionic matter term in the gauge field flow equation. We combine this with two different flow equations for the fermionic degrees of freedom. The solutions for the different gradient flow setups are used in the perturbative computations of the vacuum expectation value of the Yang-Mills Lagrangian density and the field renormalization factor of the evolved fermions up to next-to-leading order in the coupling. We find a one-parameter family of flow systems for which there exists a renormalization scheme in which the evolved fermion anomalous dimension vanishes to all orders in perturbation theory. The fermion number dependence of different flows is studied and applications to lattice studies are anticipated.