论文标题
具有协变量的高维高斯图形回归模型
High Dimensional Gaussian Graphical Regression Models with Covariates
论文作者
论文摘要
尽管高斯图形模型已被广泛用于许多科学领域,但已经取得了相对有限的进度将图形结构与外部协变量联系起来。我们提出了一个高斯图形回归模型,该模型会回归协变量上高斯图形模型的平均值和精度矩阵。在共表达定量性状基因座(QTL)研究的背景下,我们的方法可以确定遗传变异和临床状况如何调节主题级网络结构,并恢复种群级别和受试者级基因网络。我们的框架促进了对平均值和精度矩阵的协变量的稀疏性。特别是对于精确矩阵,我们对有效的协变量及其对网络边缘的影响分别规定了同时稀疏性,即群体的稀疏性和元素稀疏性。我们首先在情况下使用已知的平均参数建立可变选择一致性,然后根据外部协变量,具有未知含量的更具挑战性的情况,并在两种情况下都建立了$ \ ell_2 $收敛率和估计的精度参数的选择一致性。我们提出的方法的效用和功效是通过模拟研究以及与脑癌患者共表达QTL研究的应用。
Though Gaussian graphical models have been widely used in many scientific fields, relatively limited progress has been made to link graph structures to external covariates. We propose a Gaussian graphical regression model, which regresses both the mean and the precision matrix of a Gaussian graphical model on covariates. In the context of co-expression quantitative trait locus (QTL) studies, our method can determine how genetic variants and clinical conditions modulate the subject-level network structures, and recover both the population-level and subject-level gene networks. Our framework encourages sparsity of covariate effects on both the mean and the precision matrix. In particular for the precision matrix, we stipulate simultaneous sparsity, i.e., group sparsity and element-wise sparsity, on effective covariates and their effects on network edges, respectively. We establish variable selection consistency first under the case with known mean parameters and then a more challenging case with unknown means depending on external covariates, and establish in both cases the $\ell_2$ convergence rates and the selection consistency of the estimated precision parameters. The utility and efficacy of our proposed method is demonstrated through simulation studies and an application to a co-expression QTL study with brain cancer patients.