论文标题

手性主操作员的两点相关器,具有$ \ MATHCAL {n} = 4 $ sym的Wilson Line缺陷

Two-Point Correlator of Chiral Primary Operators with a Wilson Line Defect in $\mathcal{N}=4$ SYM

论文作者

Barrat, Julien, Liendo, Pedro, Plefka, Jan

论文摘要

我们在存在线路缺陷的情况下研究$ \ Mathcal {n} = 4 $ SEMS的应力调整多重组的两点函数。更确切地说,我们专注于$ \ mathfrak {so}(so}(6)_ \ text {r} $ r-Mymmetry的$ 20'$ irrep,位于$ 20'$ irrep中的单个轨道运算符,并加入Maldacena-Wilson Line,并使配置添加两点非功能。我们结合使用扰动理论和缺陷CFT技术,以在耦合常数中获得近级领先顺序的结果。作为缺陷CFT相关器,存在两个(超级)保形块扩展,它们分别捕获缺陷和批量数据。我们为缺陷CFT数据提供了一个封闭形式的公式,该公式允许在一个运算符接近线路时为极限编写有效的泰勒级数。在技​​术上,批量通道更加困难,并且封闭形式的公式特别具有挑战性,但是我们使用分析来检查$ \ Mathcal {n} = 4 $ sym的众所周知的数据。特别是,我们恢复了一个著名的扭曲两个操作员(包括Konishi多重组)的塔的正确异常尺寸,并成功地比较了应力调节多重组的单点函数与使用矩阵模型技术获得的结果。

We study the two-point function of the stress-tensor multiplet of $\mathcal{N}=4$ SYM in the presence of a line defect. To be more precise, we focus on the single-trace operator of conformal dimension two that sits in the $20'$ irrep of the $\mathfrak{so}(6)_\text{R}$ R-symmetry, and add a Maldacena-Wilson line to the configuration which makes the two-point function non-trivial. We use a combination of perturbation theory and defect CFT techniques to obtain results up to next-to-leading order in the coupling constant. Being a defect CFT correlator, there exist two (super)conformal block expansions which capture defect and bulk data respectively. We present a closed-form formula for the defect CFT data, which allows to write an efficient Taylor series for the correlator in the limit when one of the operators is close to the line. The bulk channel is technically harder and closed-form formulae are particularly challenging to obtain, nevertheless we use our analysis to check against well-known data of $\mathcal{N}=4$ SYM. In particular, we recover the correct anomalous dimensions of a famous tower of twist-two operators (which includes the Konishi multiplet), and successfully compare the one-point function of the stress-tensor multiplet with results obtained using matrix-model techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源