论文标题

敷料方法是Sigma模型中非线性叠加的

The Dressing Method as Non Linear Superposition in Sigma Models

论文作者

Katsinis, Dimitrios, Mitsoulas, Ioannis, Pastras, Georgios

论文摘要

我们在非线性Sigma模型(NLSM)上应用了调味料方法,该模型描述了$ \ Mathbb {r} \ times \ times \ mathrm {s}^2 $的字符串在任意种子上的传播。我们获得了相应的辅助系统的形式解决方案,该解决方案是根据具有与种子相同的pohlmeyer对应物的NLSM的解决方案表示的。因此,我们表明可以在不求解任何微分方程的情况下应用敷料方法。在这种情况下,出现了叠加原理:穿着的溶液以与种子相同的pohlmeyer对应物的NLSM的溶液表达为种子的非线性叠加。

We apply the dressing method on the Non Linear Sigma Model (NLSM), which describes the propagation of strings on $\mathbb{R}\times \mathrm{S}^2$, for an arbitrary seed. We obtain a formal solution of the corresponding auxiliary system, which is expressed in terms of the solutions of the NLSM that have the same Pohlmeyer counterpart as the seed. Accordingly, we show that the dressing method can be applied without solving any differential equations. In this context a superposition principle emerges: The dressed solution is expressed as a non-linear superposition of the seed with solutions of the NLSM with the same Pohlmeyer counterpart as the seed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源