论文标题
欧几里得$ K $ -Median的近似硬度
Hardness of Approximation of Euclidean $k$-Median
论文作者
论文摘要
以下方式定义了Euclidean $ K $ -Median问题:给定$ \ Mathbb {r}^{d} $中的$ n $点的$ \ Mathcal {x} $,以及一个整数$ k $,找到一个集合$ c \ subset \ subset \ subbb \ mathbb {r} $ $ c $ $φ(c,c,c,\ mathcal {x})\ equiv \ sum_ {x \ in \ mathcal {x}}} \ min_ {c \ in c} \ in c} \ | x-c \ | _ {2} $最小化。欧几里得$ k $ -MEANS问题的定义类似,通过用成本函数的平方距离替换距离。欧几里得$ k $ -MEANS问题已知各种近似结果的硬度。但是,欧几里得$ k $ -Median问题的近似结果尚无近似结果。在这项工作中,假设游戏猜想(UGC),我们为欧几里得$ k $ -Median问题提供了近似结果的第一个硬度。 此外,我们研究了欧几里得$ k $ -Means/$ k $ -Median问题在双标准设置中的近似硬度,在该设置中,允许算法选择超过$ K $中心。也就是说,允许双标准近似算法输出$βK$中心(对于常数$β> 1 $),并且相对于最佳$ k $ -Means/$ k $ -Median成本计算了近似值。在这种情况下,我们显示了任何$ k $ -Median问题的近似结果的第一个硬度,假设$β<1.015 $(假设UGC)。我们还显示了欧几里得$ k $ -MEANS问题的近似结果类似的双标准硬度,并且再次假设$β<1.28 $,再次假定为UGC。
The Euclidean $k$-median problem is defined in the following manner: given a set $\mathcal{X}$ of $n$ points in $\mathbb{R}^{d}$, and an integer $k$, find a set $C \subset \mathbb{R}^{d}$ of $k$ points (called centers) such that the cost function $Φ(C,\mathcal{X}) \equiv \sum_{x \in \mathcal{X}} \min_{c \in C} \|x-c\|_{2}$ is minimized. The Euclidean $k$-means problem is defined similarly by replacing the distance with squared distance in the cost function. Various hardness of approximation results are known for the Euclidean $k$-means problem. However, no hardness of approximation results were known for the Euclidean $k$-median problem. In this work, assuming the unique games conjecture (UGC), we provide the first hardness of approximation result for the Euclidean $k$-median problem. Furthermore, we study the hardness of approximation for the Euclidean $k$-means/$k$-median problems in the bi-criteria setting where an algorithm is allowed to choose more than $k$ centers. That is, bi-criteria approximation algorithms are allowed to output $βk$ centers (for constant $β>1$) and the approximation ratio is computed with respect to the optimal $k$-means/$k$-median cost. In this setting, we show the first hardness of approximation result for the Euclidean $k$-median problem for any $β< 1.015$, assuming UGC. We also show a similar bi-criteria hardness of approximation result for the Euclidean $k$-means problem with a stronger bound of $β< 1.28$, again assuming UGC.